Teacher Manual

AMSCO SCHOOL PUBLICATIONS, INC., a division of Perfection Learning ${ }^{\circledR}$

Mathematics Consultant

Joyce Bernstein, Ed.D.

Secondary Supervisor for Mathematics, (retired)
East Williston Union Free School District
Old Westbury, New York

Reviewers

Barbara Camp
Mathematics Department Coordinator, (retired)
Terryville High School
Plymouth Public Schools
Plymouth, CT
Jaclyn Carey
Mathematics Teacher
Delran High School
Delran Public Schools
Delran, NJ
Celia Foster
Assistant Principal Mathematics
Grover Cleveland High School
New York City Department of Education
Queens, NY
Diane M. Mayer
Mathematics Teacher \& Physics Teacher
Lopez Island High School
Lopez Island School District
Lopez Island, WA

Tara McCasland
Mathematics Teacher
Kankakee Jr High and High School
Kankakee School District \#111
Kankakee, IL

Heather Ott

Mathematics Teacher
Executive Leadership and Entrepreneurial
Development at Olympic High School
Charlotte-Mecklenburg School District
Charlotte, NC
Tony Pickar
Mathematics Teacher
D.C. Everest Senior High
D.C. Everest School District

Schofield, WI
Stephanie Thompson
Mathematics Teacher
Torrey Pines High School
San Dieguito Union High School District
Del Mar, CA

Composition by Lapiz
Please visit our Web sites at: www.amscopub.com and www.perfectionlearning.com
When ordering this book, please specify:
Softcover: ISBN 978-0-7891-8459-7 or 94153
eBook: ISBN 978-1-68240-488-1 or 94153D
© 2015 Perfection Learning ${ }^{\circledR}$
The purchase of this book entitles an individual teacher to reproduce certain pages for use in the classroom. This permitted use of copyrighted material does not extend beyond the building level. Reproduction, transmittal, or retrieval of this work is prohibited without written permission from the publisher. For information regarding permissions, write to: Permissions Department, Perfection Learning, 2680 Berkshire Parkway, Des Moines, Iowa 50325.

Mathematical Practice Standards iv
Lesson Planning Guide viii

- AMSCO Geometry Walk-Through viii
- AMSCO Geometry Digital Teacher's Edition Walk-Through xvi
- Common Core Correlation Chart xxi
- engage ${ }^{\text {ny }}$ Correlation Chart xxviii
Chapter R: Algebra Review 2
Enrichment Activities 9
Chapter 1: Geometry Fundamentals 11
Enrichment Activities 27
Chapter 2: Similar Figures and Dilations 43
Enrichment Activities 65
Chapter 3: Reasoning 67
Enrichment Activities 86
Chapter 4: Parallel and Perpendicular Lines 99
Enrichment Activities 125
Chapter 5: Congruent Triangles 128
Enrichment Activities 151
Chapter 6: Relationships Within Triangles 153
Enrichment Activities 182
Chapter 7: Similarity and Trigonometry 189
Chapter 8: Circles 220
Enrichment Activities 244
Chapter 9: Polygons 248
Enrichment Activities 287
Chapter 10: Solids 293
Enrichment Activities 319
Chapter 11: Conics 326
Enrichment Activities 356
Chapter 12: Probability 358
Enrichment Activities 392

Standards

Standards	Geometry Lesson
Geometry	
Congruence	
Experiment with transformations in the plane G-CO. 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	1.1, 4.1, 8.1, 8.5
G-CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).	1.4, 1.5, 1.6, 1.7, 2.2, 2.4
G-CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	1.5, 1.6
G-CO. 4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.	1.5, 1.6, 1.7, 11.3
G-CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.	1.3, 1.4, 1.5, 1.6, 1.7, 2.4
Understand congruence in terms of rigid motions G-CO. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	1.3, 1.4, 1.5, 1.6, 1.7
G-CO. 7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	1.3, 5.4
G-CO. 8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	5.4
Prove geometric theorems G-CO. 9 Prove theorems about lines and angles. Theorems inc/ude: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.	3.3, 3.4, 4.1, 4.2, 4.3, 6.2
G-CO. 10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.	4.5, 5.1, 5.3, 5.4, 6.1, 6.4
G-CO. 11 Prove theorems about parallelograms. Theorems inc/ude: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.	9.1, 9.2, 9.3

G-CO. 12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	1.1, 4.3, 5.1, 6.2, 6.3, 9.6
G-CO. 13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	8.3
Similarity, Right Triangles, \& Trigonometry	
Understand similarity in terms of similarity transformations G-SRT. 1 Verify experimentally the properties of dilations given by a center and a scale factor. G-SRT.1a A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.	2.2
G-SRT.1b The dilation of a line segment is longer or shorter in the ratio given by the scale factor.	2.2
G-SRT. 2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	2.2, 2.3
G-SRT. 3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.	7.1
Prove theorems involving similarity G-SRT. 4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.	7.4
G-SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	$\begin{aligned} & 2.1, \\ & 7.1,7.2, \\ & 7.2,3,5.2,5.3,5.4,6.2 \end{aligned}$
Define trigonometric ratios and solve problems involving right triangles G-SRT. 6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.	7.6
G-SRT. 7 Explain and use the relationship between the sine and cosine of complementary angles.	7.6
G-SRT. 8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.*	$7.3,7.5,7.6,9.8$
Apply trigonometry to general triangles G-SRT. 9 (+) Derive the formula $A=1 / 2 a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.	7.8
G-SRT. 10 (+) Prove the Laws of Sines and Cosines and use them to solve problems.	7.8

G-SRT.11 (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).	7.8
Circles	11.3
Understand and apply theorems about circles G-C. 1 Prove that all circles are similar.	$8.1,8.2,8.3,8.4$
G-C. 2 andentify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles, inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.	8.
G-C. 3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.	$6.3,6.5,8.1,8.3$
G-C. 4 (+) Construct a tangent line from a point outside a given circle to the circle.	8.1
Find arc lengths and areas of sectors of circles G-C. 5 Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.	8.5

Expressing Geometric Properties with Equations

Translate between the geometric description and the equation for	11.3
a conic section	
G-GPE. Derive the equation of a circle of given center and radius using	
the Pythagorean Theorem; complete the square to find the center and	
radius of a circle given by an equation.	

| G-GPE. 2 Derive the equation of a parabola given a focus and directrix. | 11.2 |
| :--- | :--- | :--- |
| Use coordinates to prove simple geometric theorems algebraically | $6.1,6.4,9.5$ |
| G-GPE. 4 Use coordinates to prove simple geometric theorems | |
| algebraically. For example, prove or disprove that a figure defined by four | |
| given points in the coordinate plane is a rectangle; prove or disprove that | |
| the point $(1, \sqrt{ } 3)$ lies on the circle centered at the origin and containing | |
| the point (0,2). | |

G-GPE. 5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

G-GPE. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.	$1.2,6.3,6.4$
G-GPE. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.*	9.6

Geometric Measurement \& Dimension

Explain volume formulas and use them to solve problems

4.4, 9.1

G-GMD. 1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.
8.1, 10.3

Standards	Geometry Lesson
G-GMD. 2 (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.	10.4
G-GMD. 3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*	10.3
G-GMD. 4 Identify the shapes of two-dimensional cross-sections of threedimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.	10.1, 11.1, 11.2
Modeling with Geometry	
Apply geometric concepts in modeling situations G-MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*	9.6, 9.7, 9.8, 10.2, 10.3
G-MG. 2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*	9.6, 10.2, 10.5
G-MG. 3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*	9.6, 9.8, 10.2, 10.3
Statistics and Probability	
Conditional Probability \& the Rules of Probability	
Understand independence and conditional probability and use them to interpret data S-CP. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	12.1, 12.3, 12.4
S-CP. 2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	12.3
S-CP. 3 Understand the conditional probability of A given B as $P(A$ and $B) /$ $P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	12.5
S-CP. 4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.	12.5
S-CP. 5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.	12.3, 12.5

Standards	Geometry Lesson
Use the rules of probability to compute probabilities of compound events. S-CP. 6 Find the conditional probability of A given B as the fraction of $B^{\prime} s$ outcomes that also belong to A, and interpret the answer in terms of the model.	12.5
S-CP. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.	12.4
S-CP. 8 (+) Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.	12.5
S-CP. 9 (+) Use permutations and combinations to compute probabilities of compound events and solve problems.	12.2
Using Probability to Make Decisions	
Use probability to evaluate outcomes of decisions S-MD. 6 (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).	12.1, 12.3
S-MD. 7 (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).	12.1, 12.3, 12.4, 12.5
Algebra	
Seeing Structure in Expressions	
Interpret the structure of expressions. A-SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.	R. 6
Arithmetic with Polynomials and Rational Expressions	
Perform arithmetic operations on polynomials. A-APR. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	R. 5
Understand the relationship between zeros and factors of polynomials. A-APR. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	R. 9
Creating Equations*	
A-CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.	R. 1

Standards	Geometry Lesson
Reasoning with Equations and Inequalities	
Solve equations and inequalities in one variable. A-REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	R.1, R. 2
A-REI. 4 Solve quadratic equations in one variable. A-REI.4a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.	R. 8
Solve systems of equations. A-REI. 5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	R. 4
A-REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	R. 4
Represent and solve equations and inequalities graphically. A-REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	R. 9
Functions	
Building Functions	
Build new functions from existing functions. F-BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, $f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	R. 9

