Oklahoma Geometry Standards Correlated to Amsco Geometry Lessons		Amsco Lesson
G.RL.1 Use appropriate tools	G.RL.1.1 Understand the use of undefined terms, definitions, postulates, and theorems in logical	3.1, 3.2, 3.3, 3.4
and logic to evaluate	arguments/proofs.	
mathematical arguments.	G.RL.1.2 Analyze and draw conclusions based on a set of conditions using inductive and deductive	3.1, 3.2, 3.3, 3.4
	reasoning. Recognize the logical relationships between a conditional statement and its inverse,	
	converse, and contrapositive.	
	G.RL.1.3 Assess the validity of a logical argument and give counterexamples to disprove a	3.1
	statement.	
G.2D.1 Discover, evaluate and	G.2D.1.1 Apply the properties of parallel and perpendicular lines, including properties of angles	4.1, 4.2, 4.3, 4.4
analyze the relationships	formed by a transversal, to solve real-world and mathematical problems and determine if two	
between lines, angles, and	lines are parallel, using algebraic reasoning and proofs.	
polygons to solve real-world and	G.2D.1.2 Apply the properties of angles, including corresponding, exterior, interior, vertical,	4.1, 4.2, 4.3, 4.4, 4.5
mathematical problems; express	complementary, and supplementary angles to solve real world and mathematical problems using	
proofs in a form that clearly	algebraic reasoning and proofs.	
justifies the reasoning, such as	G.2D.1.3 Apply theorems involving the interior and exterior angle sums of polygons and use them	9.4
two-column proofs, paragraph	to solve real-world and mathematical problems using algebraic reasoning and proofs.	
proofs, flow charts, or	G.2D.1.4 Apply the properties of special quadrilaterals (square, rectangle, trapezoid, isosceles	9.2, 9.5
illustrations.	trapezoid, rhombus, kite, parallelogram) and use them to solve real-world and mathematical	
	problems involving angle measures and segment lengths using algebraic reasoning and proofs.	
	G.2D.1.5 Use coordinate geometry to represent and analyze line segments and polygons,	1.2, 1.3, 1.4, 2.2, 6.1
	including determining lengths, midpoints, and slopes of line segments.	
	G.2D.1.6 Apply the properties of polygons to solve real-world and mathematical problems	9.1, 9.4, 9.6, 9.7, 9.8
	involving perimeter and area (e.g., triangles, special quadrilaterals, regular polygons up to 12	
	sides, composite figures).	
	G.2D.1.7 Apply the properties of congruent or similar polygons to solve real-world and	R.10, 2.1, 2.3, 5.1, 5.2,
	mathematical problems using algebraic and logical reasoning.	5.3, 5.4, 6.4, 7.8
	G.2D.1.8 Construct logical arguments to prove triangle congruence (SSS, SAS, ASA, AAS and HL)	5.2, 5.3, 5.4, 7.1, 7.2
	and triangle similarity (AA, SSS, SAS).	
	G.2D.1.9 Use numeric, graphic and algebraic representations of transformations in two	1.3, 1.4, 1.5, 1.6, 1.7,
	dimensions, such as reflections, translations, dilations, and rotations about the origin by multiples	2.1, 2.2, 2.3, 2.4
	of 90°, to solve problems involving figures on a coordinate plane and identify types of symmetry.	

Oklahoma Geometry Standards Correlated to Amsco Geometry Lessons		Amsco Lesson
G.3D.1 Solve real-world and	G.3D.1.1 Solve real-world and mathematical problems using the surface area and volume of	10.1, 10.2, 10.3, 10.4,
mathematical problems	prisms, cylinders, pyramids, cones, spheres, and composites of these figures. Use nets, measuring	10.5
involving three dimensional	devices, or formulas as appropriate.	
figures.	G.3D.1.2 Use ratios derived from similar three-dimensional figures to make conjectures,	10.3, 10.4, 10.5
	generalize, and to solve for unknown values such as angles, side lengths, perimeter or	
	circumference of a face, area of a face, and volume.	
G.C.1 Solve real-world and	G.C.1.1 Apply the properties of circles to solve problems involving circumference and area,	8.1, 8.3, 8.4, 8.5, 10.2,
mathematical problems using	approximate values and in terms of !, using algebraic and logical reasoning.	10.3, 10.4
the properties of circles.	G.C.1.2 Apply the properties of circles and relationships among angles; arcs; and distances in a	8.1, 8.2, 8.3, 8.4
	circle among radii, chords, secants and tangents to solve problems using algebraic and logical	
	reasoning.	
	G.C.1.3 Recognize and write the radius !, center (<i>h</i> , !), and standard form of the equation of a	11.1, 11.3
	circle $(! - h)2 + (! - !)2 = !2$ with and without graphs.	
	G.C.1.4 Apply the distance and midpoint formula, where appropriate, to develop the equation of	11.1, 11.3
	a circle in standard form.	
G.RT.1 Develop and verify	G.RT.1.1 Apply the distance formula and the Pythagorean Theorem and its converse to solve real-	7.3, 7.4
mathematical relationships of	world and mathematical problems, as approximate and exact values, using algebraic and logical	
right triangles and trigonometric	reasoning (include Pythagorean Triples).	
ratios to solve real-world and	G.RT.1.2 Verify and apply properties of right triangles, including properties of 45-45-90 and 30-60-	7.5
mathematical problems.	90 triangles, to solve problems using algebraic and logical reasoning.	
	G.RT.1.3 Use the definition of the trigonometric functions to determine the sine, cosine, and	7.6, 7.7
	tangent ratio of an acute angle in a right triangle. Apply the inverse trigonometric functions as	
	ratios to find the measure of an acute angle in right triangles.	
	G.RT.1.4 Apply the trigonometric functions as ratios (sine, cosine, and tangent) to find side	7.6, 7.7
	lengths in right triangles in real-world and mathematical problems.	

